Time: 2 hours

Notations: \mathbb{N} denotes the set of natural numbers, \mathbb{F}_{p^n} for a prime p denotes the finite field with p^n elements.

Answer all questions. Provide complete justification for all your answers.

- (1) (i) Let K be a field extension of F and a ∈ K be such that [F(a) : F] is odd. Show that F(a) = F(a²).
 (ii) Give an example to show that this statement may be false if the degree of F(a) over F is even. (2+4)
- (2) (i) Prove that if K_1 and K_2 are two finite extensions of a field F contained in some field K, then

 $[K_1K_2:F] \leq [K_1:F][K_2:F],$ where K_1K_2 is the composite field of K_1 and K_2 . (ii) Also show that equality holds if $[K_1:F]$ and $[K_2:F]$ are relatively prime. (4+2)

- (3) Let F be a finite field of characteristic p and let f(x) ∈ F[x] be an irreducible polynomial.
 (i) Prove that there exists a n ∈ N such that f(x) divides the polynomial x^{pⁿ} x in F[x].
 (ii) Show that f(x) is separable.
- (4) Let Φ_n(x) denote the n-th cyclotomic polynomial. Then prove that
 (i) For any n ∈ N, xⁿ − 1 = Π_{d/n}Φ_d(x)
 (ii) For n odd, n > 1,
 Φ_{2n}(x) = Φ_n(-x).

$$(2+4)$$

(5) (i) Define Galois extensions.
(ii) Show that for a prime p and n ∈ N, F_{pⁿ} over F_p is a Galois extension.
(iii) Show that the Galois group Gal(F_{pⁿ} | F_p) is cyclic of order n. Exhibit a generator of the Galois group. (1+2+3)